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Abstract. The predictions of relativistic Schrödinger theory (RST) for the relativistic effects in helium-like
ions with high nuclear charge (Z ∼ 30–80) are elaborated in the electrostatic approximation (i.e. neglection
of the magnetic interactions). The corresponding RST results are found to meet with the experimental data
and with the predictions of other theoretical approaches, provided an estimate of the (neglected) magnetic
effects is taken into account. This suggests to carry through high-precision calculations (including the
magnetic forces) in order to further test the physical significance of RST.

PACS. 03.65.Pm Relativistic wave equations – 03.65.Ge Solutions of wave equations: bound states –
03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.)

1 Introduction

The present paper is concerned with setting up a gen-
eral practicable quantum mechanics for relativistic many-
particle systems. Indeed, after a century of intense devel-
opment of quantum physics the relativistic many-particle
systems still present a serious challenge for the physicists,
perhaps rather for the theorists than for the experimen-
talists. It is true, there are no theoretical problems with
the non-relativistic many-particle systems which can be
described in an absolutely satisfactory manner by extend-
ing Schrödinger’s original ideas (about the behavior of a
single non-relativistic particle) to the many-particle sys-
tems [1]. However, certain problems do emerge when one
tries to write down the analogous many-body generaliza-
tions for the relativistic one-particle systems which are
generally described by the well-known Klein-Gordon and
Dirac equations, see, e.g., ref. [2]. Following here the gen-
eralization process for the non-relativistic systems, one
would end up with the manifestly covariant Hamiltonian
formalism with constraints [3] which, however, seems to
have its difficulties when applied to a general particle
number N . On the other hand, the well-established quan-
tum field theory [4] is not able to deal directly with the
bound states of fixed particle number N , but first it has
to be approximated by the notorious Bethe-Salpeter equa-
tions [5,6]. However, this type of equations has been found
to suffer from various deficiencies [7] and thus is consid-
ered as still difficult to solve and understand [8].
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1.1 Approximation methods

Thus, in lack of a well-working relativistic N -particle
quantum mechanics, one has to resort to approximation
and perturbation methods. These become especially im-
portant for strong external fields (e.g. Coulomb field gen-
erated by a large number zex of charge units located at
the force center r = 0), since for such ultra-relativistic sit-
uations all the non-relativistic approaches become inade-
quate. (For an overview of the quantum effects in strong
fields, see ref. [9]). For instance, the Lamb shift ∆LE of a
one-particle energy level En of principal quantum num-
ber n amounts to a non-negligible fraction of the rest
mass Mc2 and is of the following general shape [10]:

∆LE =
αs

π

(zexαs)4

n3
F (zexαs)Mc2 . (1.1)

Here the function F depends weakly upon the prod-
uct of nuclear-charge number zex and fine-structure con-
stant αs, so that the Lamb shift ∆LE essentially varies
as z4ex. Thus, for the highly ionized (i.e. hydrogen-like)
uranium atom with zex = 92 the ground-state Lamb shift
is ∆LE ≈ 458 eV [11], whereas the corresponding spec-
tral lines can be determined with uncertainties as less
as 16 eV [12]. Clearly, such experimental data present a
challenge for the theorists to develop adequate approxi-
mation methods of comparable uncertainty, e.g. the “uni-
fied” method of Drake using a relativistic (1/zex) expan-
sion [13], or the multiconfiguration Dirac-Fock method
(MCDF) [14,15], the relativistic many-body perturbation
theory (MBPT) [16], or finally the all-order technique for
relativistic MBPT [17]. For an overview of high-precision
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Table 1. Comparison of RST predictions (third column) and experimental values [19] (second column) for the ground-state
interaction energy ∆E of the two electrons.

Element (zex) ∆Eexp (eV) ∆E
(e)
RST (eV) ∆ =

∆Eexp − E
(e)
RST

∆Eexp
(%) f2

∗

Ge (32) 562.5± 1.6 553.0 1.7 0.296
Xe (54) 1027.2± 3.5 974.3 5.1 0.297
Dy (66) 1341.6± 4.3 1232 8.2 0.295
W (74) 1568± 15 1423 9.3 0.248
Bi (83) 1876± 14 1661 11.5 0.222

calculations for helium see also the contribution of G.W.F.
Drake in ref. [18]. The predictions of all these theoretical
approaches have been tested in a high-precision measure-
ment of the two-electron ground-state interaction energy
for helium-like high-zex ions [19], and it has been found
that the observational data fall (up to some residual eV)
into the range of values predicted by the theoretical ap-
proaches.

1.2 Relativistic Schrödinger theory

These theoretical efforts should sufficiently demonstrate
the necessity to have a coherent relativistic quantum me-
chanics for all the various phenomena occurring with the
many-particle systems, especially as a theoretical basis for
understanding the relativistic effects occurring in the sta-
tionary atomic states. Eventually, those effects due to field
quantization (e.g. Lamb shift) would not be accounted for
by such a theory, but all the relativistic and exchange ef-
fects should be truly included in the formalism so that
the associated approximation and perturbation methods
become obsolete.

A fresh approach to this long-standing problem has
recently been put forward in form of the relativistic
Schrödinger theory (RST), an alternative approach to rel-
ativistic quantummechanics [20]. After the general mathe-
matical structure of this theory has sufficiently been elab-
orated in some preceding papers [21–23], one may wish
now to see some concrete demonstrations of the prac-
tical usefulness of this theory, especially concerning the
relativistic effects in the many-electron atoms or ions, as
mentioned above. Since it has turned out that the well-
known Hartree-Fock approximation of conventional quan-
tum theory is just the non-relativistic limit of RST [24]
(or, conversely, RST is the relativistic generalization of
the HF approach), the above-mentioned MCDF [14,15]
naturally must appear as the direct competitor of RST.
Therefore it is now self-suggesting to carry through within
RST the high-precision calculations for the two-electron
ground-state interaction energy in order to compare the
RST results to the experimental and theoretical data re-
ported in ref. [19].

Clearly, such a comparison would then clarify the sci-
entific value of RST; however, merely comparing numbers
would yield few insights into the specific way in which
these predictions come about on the conceptual back-
ground of the new theory and therefore we renounce for

the moment numerical precision in favor of a more qual-
itative line of arguments. This will shed more light upon
the structural peculiarities of the new theory.

1.3 Electrostatic approximation

More concretely, we subsequently compute the ground-
state interaction energy of the two electrons in the high-zex
ions within the electrostatic approximation, where the
magnetic contribution to the interaction energy is ne-
glected, but in favor of the transparency of the calculation
and insight into the logical architecture of the theoretical
framework. Comparing then these approximate RST re-
sults to the corresponding collection of experimental and
theoretical data of ref. [19] gives us that fraction of the in-
teraction energy (� 10%, see table 1) which is due to the
magnetic forces among the two electrons. On the other
hand, this energy contribution due to the magnetic forces
may first be estimated by some qualitative arguments be-
ing based upon the fundamentals of the new theory; and
when one finally finds sufficient agreement between these
two results (obtained along rather different routes of rea-
soning), one may take this as enough motivation in order
to undertake the required high-precision calculations for
RST (see a separate paper).

1.4 Magnetic interactions

In order to obtain the desired estimate of the magnetic
energy contribution, consider first the ground-state en-
ergy (M∗c2, say) of a single Dirac particle of rest mass M
in the Coulomb field [2]). This ground-state energy may
be split up into two parts (cf. eq. (4.3) below)

M∗c2 = Mc2
√

1− (zexαs)2 ≡
Mc2√

1−(zexαs)2
− (zexαs)2

Mc2√
1−(zexαs)2

. (1.2)

Now in RST the one-particle energy eigenvalue (M∗c2)
is always identical to the field energy ET carried by the
wave function ψ as the corresponding solution of the en-
ergy eigenvalue problem, see ref. [25] or eq. (3.76) below
for the case of a spin-0 particle. On the other hand, in RST
the single-particle field energy ET is always composed of
two contributions, namely the proper matter energy (EM)
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and the interaction energy Ees with respect to the exter-
nal source, see eq. (2.70) below with omitted interelec-
tronic interaction energies ER and EC. Furthermore, one
can show [26] that for a Dirac particle these two ground-
state energy contributions EM and Ees just coincide with
the two terms on the right of eq. (1.2):

EM ⇒
Mc2√

1− (zexαs)2
, (1.3a)

Ees ⇒ −(zexαs)2
Mc2√

1− (zexαs)2
. (1.3b)

Here the matter energy EM (1.3a) is to be interpreted
as the rest mass energy of the particle (Mc2) plus the
kinetic energy due to translational motion with a typical
ground-state velocity v:

EM =
Mc2√

1−
(v
c

)2
(1.4)

which by comparison to eq. (1.3a) is then estimated as

v ≈ zexαs . (1.5)

However, when a point charge, emitting at rest the
electric field �E(�r ), is moving with velocity v it generates
a magnetic field �H(�r ) of magnitude

| �H(�r )| ≈ v/c√
1−(v/c)2

· | �E(�r )| = zexαs√
1−(zexαs)

2
· | �E(�r )| .

(1.6)
For moving charge distributions one would modify this
relation into

| �H(�r )| ≈ f∗
zexαs√

1− (zexαs)
2
| �E(�r )| , (1.7)

where the constant prefactor f∗ reflects the pattern of
charge and current distribution of the ground state and
is assumed to vary very weakly (or even not at all) with
the nuclear charge zex. On the other hand, RST identifies
the interelectronic interaction energy as the interaction en-
ergy (ER, say) of the field modes �Ea(�r ) = −�∇Aa(�r ) (a =
1 . . . N) being emitted by the members of the N -particle
system, see the associated energy density (R)T00(�r ) in
eq. (3.58) below. Thus, when the electrostatic and mag-
netostatic interaction energies of the ground-state config-
uration are denoted by ∆E(e)

RST and ∆E(m)
RST, respectively,

one finds the following relationship:

∆E
(m)
RST ≈ f2

∗ ·
(zexαs)2

1− (zexαs)
2 ·∆E

(e)
RST . (1.8)

This result is due to the fact that the field strengths �E(�r )
and �H(�r ) do enter the energy functionals quadratically,
see the relativistic version hereof given by eq. (2.67) below.

With this estimate of the magnetic energy contribu-
tion ∆E

(m)
RST being at hand now, one can undertake a

first qualitative test of the usefulness of RST in atomic
physics; namely by calculating the ground-state interac-
tion energy ∆E(e)

RST of the helium-like high-zex ions in the
electrostatic approximation, then comparing the obtained
results to the corresponding experimental and theoretical
data ∆Eexp (taken from ref. [19]) and thus identifying the

magnetic contribution ∆E(m)
RST (1.8) as

∆E
(m)
RST = ∆Eexp −∆E(e)

RST . (1.9)

If both results (1.8) and (1.9) for∆E(m)
RST should agree with

respect to the dependence on the nuclear charge zex, one
will adopt this as a hint on the usefulness of RST when
the corresponding high-precision calculations are actually
carried through. The proposed qualitative test (1.8), (1.9)
is passed by the subsequent RST calculations in a very
satisfying manner. As is clearly demonstrated by table 1,
the observed energy difference on the right of eq. (1.9) can
satisfactorily be identified with the characteristic form of
the magnetic energy ∆E(m)

RST (1.8) since the required weak
variability of the prefactor

f2
∗ =

1− (zexαs)2

(zexαs)2
· ∆Eexp −∆E(e)

RST

∆E
(e)
RST

(1.10)

is realized over the whole range of nuclear-charge num-
bers from zex = 32 (germanium) up to zex = 83 (bis-
muth): 0.296 � f2

∗ � 0.222. Observe especially the con-
stancy of f∗ for the light nuclei up to zex = 66 (dyspro-
sium).

Thus one arrives at the conclusion that the RST pre-
dictions (if calculated exactly) can be expected to ap-
proach the observational data with comparable precision
as the considered existing theoretical methods [13–18].
Here, it turns out that the main relativistic effects are
qualitatively included already in the electrostatic approx-
imation, so that the magnetic effects may be treated as a
perturbation hereof.

1.5 Procedure

Our subsequent line of arguments is the following: In
sect. 2 we briefly collect the RST fundamentals from vari-
ous preceding papers in order to have the paper sufficiently
self-contained. Since the gravitational (and other gauge)
interactions are of minor significance in atomic physics, we
simplify the theory and restrict ourselves to working over a
flat space-time and considering only the electromagnetic
interactions. Furthermore, for the sake of transparency,
we are satisfied here with developing the RST formalism
for spin-0 particles; and it is only in the last part of the
paper (sect. 4.5) that we have to consider spin- 12 parti-
cles in order to obtain results which can be compared to
the experimental data. The reason why the scalar ver-
sion of RST (for spin-0 particles) is insufficient in order
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Fig. 1. Breakdown of one-particle ground-state (eq. (4.3)).
For weak external fields (zex � 20, say) the behavior of single
fermions and bosons is very similar; however, strong fields in-
duce a qualitatively different behavior: the vacuum breakdown
occurs for zex ≈ 68 in the bosonic case (a), but for zex ≈ 137
in the fermionic case (b).
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Fig. 2. RST and HF energy. In the non-relativistic
regime (zex � 20) the RST (a) and HF (b) predictions
for the (1s, 2s) energy ET (3.68) or (3.69), respectively, are
close together as expected; but in the highly relativistic
regime (zex � 60), the RST curve (a) tends to develop a sin-
gularity of the kind known from the one-particle spectrum of
fig. 1. This spoils the use of scalar fields in order to approx-
imate the helium spectrum even when the fine structure is
neglected (fig. 4).

to describe the higher-zex ions is discussed in detail and
illustrated by figs. 1, 2.

In sect. 3 the general RST formalism is cut down to
the two-particle systems with electromagnetic interactions
and it is demonstrated explicitly how the Hartree-Fock
equations do emerge as the non-relativistic limit of RST
when one restricts oneself to the treatment of station-
ary bound states. The concept of relativistic energy func-
tional ET for the stationary states is introduced so that
it becomes possible to set up the corresponding energy
level systems for the many-electron atoms. As support of
the proposed construction of the energy functional ET,
one applies this to the one-particle systems (sect. 3.7) and
finds the coincidence of the proposed field energy ET with
the mass eigenvalue as determined from the corresponding
energy eigenvalue equation, see eq. (3.76) below.

Finally in sect. 4, the RST mass eigenvalue equations
are solved numerically in the electrostatic approximation

0 0.05 0.1 0.15 0.2 0.25

r [10-10 m]

0

0.0005

0.001

0.0015

0.002

k2 (r)

(a) (b)

Fig. 3. Shrinking of charge distribution. The RST charge dis-
tributions ka(
r ), h(
r ) (3.18a)-(3.19) become shifted towards
the origin (r = 0) in comparison to their HF counter-
parts (3.20a)-(3.20c). Curve (a): RST; curve (b): HF. The re-
sulting decrease of the external interaction energy Ees (< 0),
eqs. (3.51)-(3.52), is responsible for the increase of the binding
energy |ET − 2Mc2|; see fig. 2.
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Fig. 4. Frequency deviation Θ (eq. (4.16)) for bosons. The
relative deviation |Θ| (eq. (4.16)) for the transition (1s, 2s) →
(1s, 1s) is smaller for scalar RST (a) than for the HF ap-
proach (b) only for moderate external fields (zex � 15). For
strong fields (zex � 20), the relativistic one-particle effects of
fig. 1 spoil the usefulness of scalar RST. The experimental val-
ues for ωex are taken from ref. [29].

and the relativistic solutions are compared to their non-
relativistic counterparts, i.e. the solutions of the Hartree-
Fock equations (see fig. 3). Here it is demonstrated that
the HF solutions become completely insufficient for de-
scribing the high-zex ions (fig. 4) whereas the spin-12 RST
solutions remain relatively close to the experimental data
(fig. 5). This supports the expectation that the RST pre-
dictions will come even closer to the experimental data
when the (neglected) magnetic part of the gauge field
equations is included into the RST calculations, see ta-
ble 1.

2 Relativistic Schrödinger theory

A natural N -particle generalization of the well-known
standard description of one-particle systems (Klein-
Gordon theory [2,10]) is the recently established RST [20],
an alternative form of relativistic quantum mechanics.
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Fig. 5. Frequency deviation Θ (eq. (4.16)) for fermions. The
frequency ω (eq. (4.21)) emitted by the fermionic transition
(1s1/2, 2s1/2

3S1) → (1s1/2, 1s1/2
1S0) comes closer to the ex-

perimental values not only in the weak-field regime (zex � 15)
but also for strong fields zex � 20. Thus, the RST predic-
tions (a) are now more precise than the HF predictions (b) for
the whole range of field strengths. Compare this to the failure
of the bosonic approach in fig. 4.

The most significant distinction with respect to the con-
ventional theory is the circumstance that RST does not
resort to the tensor product of Hilbert spaces for the com-
posite systems but rather it is based upon the Whitney
sum of the single-particle bundles. Thus, the RST wave
functions Ψ(x) for the N -particle systems are sections of a
complex vector bundle which take their values in the typi-
cal fibre C

N and, consequently, the RST operators are ma-
trices which take their values in the algebra GL(N,C) or,
respectively, in one of its subalgebras. But apart from this
mathematical difference, the RST dynamics has much in
common with Schrödinger’s original ideas governing non-
relativistic quantum mechanics.

2.1 RST dynamics

The basic dynamical equation is the relativistic
Schrödinger equation (RSE) for the wave function Ψ(x),

i�cDµΨ = HµΨ, (2.1)

respectively the relativistic von Neumann equation (RNE)
for the intensity matrix I,

DµI =
i

�c

[
I · H̄µ −Hµ · I

]
, (2.2)

when mixtures are considered in place of pure states Ψ .
The latter can be considered as a special kind of mixture,
namely when the intensity matrix I degenerates to the
tensor product of a wave function Ψ and its Hermitian
conjugate Ψ̄ :

I ⇒ Ψ ⊗ Ψ̄ . (2.3)

In the present paper we restrict ourselves to this special
case and we will exclusively make use of pure states (for a
treatment of mixtures see, e.g., ref. [27]). In contrast to the
conventional non-relativistic theory, the Hamiltonian Hµ

is not a rigid object but is itself a dynamical variable to
be determined from its field equations, i.e. the integrability
condition

DµHν −DνHµ +
i

�c
[Hµ,Hν ] = i�cFµν (2.4)

and the conservation equation

DµHµ −
i

�c
HµHµ = i�c

(
Mc

�

)2

. (2.5)

The latter equation may be used also in order to deduce
the many-particle Klein-Gordon equation (KGE)

DµDµΨ +
(
Mc

�

)2

Ψ = 0 (2.6)

from the RSE (2.1); and this eq. (2.6) is adopted by us as
the N -particle generalization of the ordinary one-particle
KGE described in the literature [2,10].

2.2 Conservation laws

The conservation equation (2.5) serves to define a con-
served current jµ: ∇µjµ = 0, (2.7)
namely through

jµ = tr(I · vµ)⇒ Ψ̄ · vµ · Ψ , (2.8)

where the velocity operator vµ reads, in terms of the
Hamiltonian Hµ,

vµ =
1
2

[
H̄µ ·

(
Mc2

)−1
+
(
Mc2

)−1 · Hµ

]
. (2.9)

For our present purposes, it is sufficient to consider iden-
tical particles so that the mass operatorM becomes pro-
portional to the identity

M =M · 1 . (2.10)

Besides the charge conservation law (2.7) the Hamilto-
nian dynamics (2.4)-(2.5) implies also the source equation
for the energy momentum density (M)Tµν of matter

∇µ (M)Tµν = fν . (2.11)

Here (M)Tµν is defined quite analogously as the current
density jµ (2.8) through

(M)Tµν = tr (I · Tµν)⇒ Ψ · Tµν · Ψ , (2.12)

where the energy momentum operator Tµν is given in
terms of the Hamiltonian Hµ as

Tµν =
1
2

{
H̄µ ·

(
Mc2

)−1 · Hν + H̄ν ·
(
Mc2

)−1 · Hµ

−gµν

[
H̄λ ·

(
Mc2

)−1 · Hλ −Mc2
]}
. (2.13)

For the pure states (2.3), it is possible to eliminate the
Hamiltonian Hµ from the matter density (M)Tµν (2.12)
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by means of the RSE (2.1) in favor of the derivatives of
the wave function Ψ :

(M)Tµν =
�

2

2M

{(
DµΨ̄

)
(DνΨ) +

(
Dν Ψ̄

)
(DµΨ)

−gµν

[(
DλΨ̄

) (
DλΨ

)
−
(
Mc

�

)2

Ψ̄ · Ψ
]}

,

(2.14)

which is the N -particle generalization of the well-known
one-particle tensor [2,25]. Moreover, the force den-
sity fν (2.11) is found as the product of the field
strength Fµν and Hamiltonian Hµ

fν = tr(I · fν)⇒ Ψ̄ · fν · Ψ (2.15)

with the force operator fν being given by

fν =
i�c

2

[
H̄µ ·

(
Mc2

)−1 · Fµν + Fµν ·
(
Mc2

)−1 · Hµ
]
.

(2.16)
Clearly, this force density fν (2.15) must again be regarded
as the N -particle generalization of the one-particle case
being usually treated in the textbooks (Lorentz force [28])
which readily will become more obvious.

2.3 Abelian symmetry breaking

The force density fν (2.15) plays an important part for
the construction of the total energy momentum den-
sity (T)Tµν of the N -particle system and must there-
fore be considered in some detail. Splitting up the field
strength Fµν into its external and internal parts:

Fµν = (ex)Fµν + (s)Fµν , (2.17)

it is clear that the external part (being generated by some
external source, e.g. the atomic nucleus) acts upon every
particle in the same way and therefore must be propor-
tional to the identity

(ex)Fµν = −i (ex)Fµν · 1 . (2.18)

On the other hand, the internal part (s)Fµν is gener-
ated by the system’s particles and therefore incorporates
both the electromagnetic and the exchange interactions
which become unified here into a U(N) gauge theory.
However, this gauge symmetry undergoes Abelian symme-
try breaking U(N) ⇒ U(1) × U(1) . . . × U(1) so that the
N -dimensional Abelian product U(1)× U(1) . . .× U(1)
constitutes the residual gauge symmetry due to the ordi-
nary electromagnetic interactions. Thus, selecting N anti-
Hermitian generators τa (a = 1 . . . N) for the residual
gauge group U(1) × U(1) . . . U(1), and (N2 − N)/2 gen-
erators χA (A = 1 . . . N(N − 1)/2) for the broken gauge
degrees of freedom, the internal-field strength (s)Fµν =
− (s)F̄µν decomposes as

(s)Fµν = F a
µντa +GA

µνχA−
∗
GA

µν χ̄A . (2.19)

Since the Abelian generators τa are adopted to be
anti-Hermitian (τ̄a = −τa), the electromagnetic field
strengths F a

µν (a = 1 . . . N) are real (
∗
F a

µν =
F a

µν), whereas the exchange field strengths GA
µν (A =

1 . . . N(N − 1)/2) are complex 2-forms.
With such an arrangement for the U(N)-valued field

strength Fµν , the Lorentz force operator fν (2.16) is also
split up into two parts

fν = (ex) fν + (s) fν , (2.20)

where the external part is built up by the to-
tal velocity operator vµ (2.9) and the external-field
strength (ex)Fµν (2.18):

(ex) fν = �c (ex)Fµν · vµ, (2.21)

and similarly the “internal part” appears in the following
form:

(s) fν = �c

(
F a

µνva
µ +GA

µνwA
µ +

∗
GA

µνw̄A
µ

)
, (2.22)

provided one introduces the electromagnetic velocity op-
erators vaµ (a = 1 . . . N) through

vαµ =
i

2

[
H̄µ ·

(
Mc2

)−1 · τα + τα ·
(
Mc2

)−1 · Hµ

]
(2.23)

and the exchange velocity operators wAµ (A = 1 . . . N(N−
1)/2) through

wAµ =
i

2

[
H̄µ ·

(
Mc2

)−1 · χA + χA ·
(
Mc2

)−1 · Hµ

]
,

(2.24a)

w̄Aµ = − i
2

[
H̄µ ·

(
Mc2

)−1 · χ̄A + χ̄A ·
(
Mc2

)−1 · Hµ

]
.

(2.24b)

This construction then implies the corresponding splitting
of the Lorentz force density fν (2.15) into an external and
internal part:

fν = (ex)fν + (s)fν (2.25)

with the external contribution being given by

(ex)fν = tr
(
I · (ex) fν

)
= �c (ex)Fµνj

µ , (2.26)

and similarly for the internal part

(s)fν = tr(I · (s) fν) =

�c

(
F a

µνja
µ +GA

µνhA
µ +

∗
GA

µν

∗
hA

µ

)
. (2.27)

Here, the definitions of the electromagnetic currents jaµ

and exchange currents hAµ proceed along the same line of
arguments as for the total current jµ (2.8), i.e.

jaµ = tr(I · vaµ) , (2.28a)

hAµ = tr(I · wAµ) , (2.28b)
∗
hAµ = tr(I · w̄aµ). (2.28c)
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2.4 Maxwell equations

Since the field strength Fµν belongs to the set of dynami-
cal variables of RST, it becomes now necessary to specify
some field equation for this object in order to close the
whole dynamical system. Here it seems immediately plau-
sible that the N -particle generalization of the well-known
Abelian Maxwell equations will be their non-Abelian ver-
sion:

DµFµν = −4πiαsJν (2.29)(
αs =

e2

�c

)
.

The U(2)-valued field strength Fµν (i.e. bundle curvature)
is generated in the usual way by the gauge potential Aµ

(i.e. bundle connection)

Fµν = ∇µAν −∇νAµ + [Aµ,Aν ] (2.30)

so that the Bianchi identity holds,

DλFµν +DµFνλ +DνFλµ ≡ 0 (2.31)(
DλFµν � ∇λFµν + [Aλ,Fµν ]

)
.

Indeed, if the current operator Jν on the right of the
Maxwell equations (2.29) can be specified in terms of the
wave function Ψ and potential Aµ, one has a closed dy-
namical system of matter and gauge fields.

However, it is exactly this problem of specifying the
current operator Jµ in terms of the RST currents jaµ

and hAµ (2.28a)-(2.28c) which is a somewhat delicate
point with respect to the emergence of unwanted self-
interactions. In order to see this problem more clearly,
first split off the external part of the Maxwell equation by
putting

Jµ = (ex)Jµ + (s)Jµ , (2.32)

with the external part consisting of the external cur-
rent (ex)jµ in a self-evident way:

(ex)Jµ = (ex)jµ · 1 . (2.33)

Thus, the external part of the Maxwell equation (2.29)
reads

Dµ (ex)Fµν = −4πiαs
(ex)Jν (2.34)(

∇µ (ex)Fµν = 4παs
(ex)jν

)
and is essentially the same as in classical electrodynam-
ics [28]. The physical reason for this is that the N particles
of the considered system do not become entangled with
the external source. What then remains to be considered
is the internal part of Maxwell’s equations:

(s)Dµ (s)Fµν = −4πiαs
(s)Jν , (2.35)

where the covariant derivative (s)Dµ refers to the internal
gauge potential (s)Aµ:

(s)Aµ = Aµ − (ex)Aµ = Aµ + i (s)Aµ · 1 =

Aa
µτa +BA

µχA −
∗
BA

µχ̄A . (2.36)

Moreover, the internal current operator (s)Jµ, occurring
on the right-hand side of Maxwell’s equations (2.35), may
be decomposed in a similar way as

(s)Jµ = i

(
′jaµτa + ′hA

µχA + ′ ∗hA
µχ̄A

)
. (2.37)

Thus, we arrive at the crucial point, namely to deter-

mine theMaxwell currents { ′jαµ} ≡ { ′jaµ; ′hA
µ,

′ ∗hA
µ} in

terms of the RST currents {jαµ} ≡ {jaµ;hAµ,
∗
hAµ}, α =

1 . . . N2, which have been defined through eqs. (2.28a)-
(2.28c).

It must be stressed here that one cannot solve this
problem by simply identifying both kinds of currents
(e.g. ′jαµ = δαβjβµ, etc.), because in this case the elec-
tromagnetic field strengths F a

µν , being generated by the
Maxwell currents ′jaµ via the Maxwell equations (2.35),
would act back to their own sources jaµ ≡ ( ′jaµ) via the
Lorentz force density (s)fν (2.27). Obviously, one has to
think of a more intelligent link of both kinds of currents
in order to avoid these notorious self-interactions!

2.5 Compatibility condition

The desired link between the Maxwell and RST currents
actually emerges as a condition for the compatibility of the
Maxwell and RST subdynamics [23]. Observe here that
the Maxwell equations imply the following conservation
law in operator form:

DµJµ ≡ 0, (2.38)

namely as a consequence of the generally valid bundle
identity for the curvature Fµν ,

DµDνFµν ≡ 0. (2.39)

Putting both the connection (s)Aµ (2.36) and the current
operator (s)Jµ (2.37) into the self-evident short-hand no-
tation

(s)Aµ = Aα
µτα , (2.40a)

(s)Jµ = i ′jαµτα , (2.40b)

with the N2 generators τα obeying the commutation re-
lations

[τα, τβ ] = Cγ
αβτγ , (2.41)

the operator identity (2.38) reads, in components,

∇µ ′jαµ = −Cα
βγA

βµ ′jγµ . (2.42)

But, on the other hand, such source relations also exist
for the RST currents jαµ (2.28a)-(2.28c), which is easily
seen by explicitly carrying through the required differen-
tiation process with the help of the RSE (2.1), or of the
KGE (2.6), respectively, which then yields

∇µjαµ = Cγ
βαA

βµjγµ . (2.43)
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Now when both currents ′jαµ and jαµ are related by some
linear transformation K = {Kα

β}, i.e.

jαµ = Kαβ
′jβµ (2.44)(

Kαβ � δαγK
γ

β , etc.
)
,

then the simultaneous validity of both source rela-
tions (2.42) and (2.43) requires that the compatibility
tensor K anti-commutes with the adjoint representa-
tions Cα = {Cβ

αγ} of the generators τα (2.41):

C T
α · K +K · Cα = 0 . (2.45)

Thus, the crucial point with the avoidance of self-
interactions is to select the generators {τα} = {τa;χA, χ̄A}
in such a way that all diagonal elements (Kα

α) of the
associated compatibility tensor K (2.44) are zero. The
subsequent treatment of the two-particle systems suggests
that this requirement can actually be satisfied for the gen-
eralN -particle situation (for the three-particle systems see
ref. [23]).

2.6 Energy momentum densities

With a consistent framework for the N -particle systems
being at hand now, one can return to our original problem
of determining the corresponding N -particle energy func-
tional ET. In the true spirit of a relativistic field theory,
one wishes to identify this energy ET, measured relative
to some inertial frame, as an integral of the time compo-
nent (T)T00 of some energy momentum tensor (T)Tµν over
the whole three-space:

ET =
∫

d3�r (T)T00(�r ) . (2.46)

Consequently, the first task is to find the energy momen-
tum density (T)Tµν carried by the coupled system of wave
functions and gauge fields. Intuitively, one will expect the
desired energy momentum density (T)Tµν to be composed
of three contributions, namely the matter part (M)Tµν and
the contributions due to the internal ( (G)Tµν) and exter-
nal ( (es)Tµν) interactions:

(T)Tµν = (M)Tµν + (G)Tµν + (es)Tµν . (2.47)

Clearly, for the one-particle systems the internal in-
teraction part (G)Tµν is missing [25]. Concerning
their source relations, from which the partial tensors
{ (M)Tµν ,

(G)Tµν ,
(es)Tµν} have to be determined, it is

plausible to assume that the interaction between the
N -particle system and an external source occurs along
some overall field to which every particle contributes in
the same way. The first one of these overall objects is the
total current jµ (2.8) which we may conceive as the sum
of all the Maxwell currents ′jaµ (2.28a):

jµ = − 1
N − 1

N∑
a=1

′jaµ = − 1
N − 1

tr (s)Jµ . (2.48)

This can be realized by choosing the Abelian genera-
tors τa (a = 1 . . . N) to be proportional to (N − 1)-
dimensional projectors

τa = −i (1− Pa) , (2.49a)
Pa · Pb = δab · Pa , (2.49b)

N∑
a=1

Pa = 1 , (2.49c)

trPa = 1 , (2.49d)

and by taking traceless exchange generators χA:

trχa = 0 . (2.50)

In a similar way, one introduces the total field strength Fµν

as the coherent superposition of all the electromagnetic
fields F a

µν through

Fµν =
N∑

a=1

F a
µν =

i

N − 1
tr (s)Fµν , (2.51)

which, according to the (non-Abelian) Maxwell equa-
tion (2.35), is linked to the total current jµ (2.48) via
the ordinary Maxwell equation

∇µFµν = −4παsjν . (2.52)

Observe here that the total current jµ enters the Maxwell
equations (2.52) with a minus sign because the system’s
particles are thought to be negatively charged, in contrast
to the positive charge of the external source (2.34).

These global objects of the N -particle system become
now relevant for the source equations of the energy mo-
mentum densities in the following sense: presuming that
the total arrangement of N -particle system plus external
source (with energy momentum density (ex)Tµν) is closed

∇µ
(

(T)Tµν + (ex)Tµν

)
= 0 , (2.53)

and adopting also the following nearby guess for the
source ( (xe)fν , say) of the external density (ex)Tµν

∇µ (ex)Tµν = (xe)fν = −�cFµν
(ex)jµ , (2.54)

one concludes, from the closedness condition (2.53),

∇µ (T)Tµν = − (xe)fν = �cFµν
(ex)jµ . (2.55)

On the other hand, the total density (T)Tµν (2.47)
consists of three parts, (M)Tµν ,

(G)Tµν and (es)Tµν , where
the source (s)fν of the matter part (M)Tµν has already
been specified by eqs. (2.27). Therefore, we are left with
the source equations for the sum of external and internal
energy momentum tensors (G)Tµν and (es)Tµν :

∇µ
(

(G)Tµν + (es)Tµν

)
= − (ex)fν − (s)fν − (xe)fν .

(2.56)
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But here we presume that when the internal gauge
fields pull at the matter system with the force density
(s)fν (2.27), then the matter system acts back upon the in-
ternal gauge field system with the negative force (− (s)fν),
i.e. we put

∇µ (G)Tµν = − (s)fν . (2.57)

Combining this assumption with the preceding source re-
lation (2.56), let us find the remaining source equation for
the external interaction as

∇µ (es)Tµν = −
(

(ex)fν + (xe)fν

)
=

�c
(
Fµν

(ex)jµ − (ex)Fµνj
µ
)
. (2.58)

However, once the source relations (2.57)-(2.58) for the
internal and external gauge interactions have been estab-
lished, it is a straightforward matter to elaborate the cor-
responding solutions (G)Tµν and (es)Tµν . For the latter
case, one tries the self-suggesting bilinear form

(es)Tµν = − �c

4παs

(
(ex)Fµν · Fν

λ + Fµλ · (ex)Fν
λ

−1
2
gµν

(ex)Fσλ · Fσλ

)
(2.59)

and verifies that this is actually a solution of (2.58) by
means of the “total” Maxwell equation (2.52), together
with its “exterior” counterpart (2.34), and by use of the
Bianchi identities

∇λFµν +∇µFνλ +∇νFλµ ≡ 0 , (2.60a)

∇λ
(ex)Fµν +∇µ

(ex)Fνλ +∇ν
(ex)Fλµ ≡ 0 . (2.60b)

These identities are implied by the fact that both two-
forms Fµν and (ex)Fµν are the exterior differentials of the
corresponding vector potentials:

Fµν = ∇µAν −∇νAµ , (2.61a)
(ex)Fµν = ∇µ

(ex)Aν −∇ν
(ex)Aµ , (2.61b)

where the second one (2.61b) is implied by the general
curl relation (2.30) and the first one (2.61a) is nothing
else than the remaining internal trace part of that link
between bundle curvature Fµν and connection Aµ,

Aµ =
i

N − 1
tr (s)Aµ =

1
N − 1

N∑
a=1

Aa
µ . (2.62)

The analogous situation with the internal den-
sity (G)Tµν (2.57) is somewhat more complicated because
it appears as the difference of the contributions of real and
complex field modes [23]:

(G)Tµν = (R)Tµν − (C)Tµν . (2.63)

Here the contribution (R)Tµν of the real field modes F a
µν

(electromagnetic fields) is given by

(R)Tµν =
1
2

(
(F)Tµν −

N∑
a=1

(a)Tµν

)
, (2.64)

where (F)Tµν is due to the coherent field Fµν (2.51)

(F)Tµν = − �c

2παs

(
FµλFν

λ − 1
4
gµνFλσF

λσ

)
(2.65)

and the individual mode densities (a)Tµν are given by

(a)Tµν = − �c

2παs

(
F a

µλF
a

ν
λ − 1

4
gµνF

a
λσF

aλσ

)
.

(2.66)
Thus the contribution (R)Tµν of the real field modes ac-
tually consists in their mutual interaction energy, with
omission of the self-energies:

(R)Tµν = − �c

4παs

·
N∑

a<b

(
F a

µλF
b
ν

λ+F b
µλF

a
ν

λ− 1
2
gµνF

a
σλF

bσλ

)
. (2.67)

A similar effect occurs also with the exchange density
(C)Tµν due to the complex modes whose field strengths
GA

µν combine with their complex conjugate:

(C)Tµν = − �c

4παs

∑
A

( ∗
GA

µλG
A

ν
λ

+
∗
GA

νλG
A

µ
λ − 1

2
gµν

∗
GA

σλG
Aσλ

)
. (2.68)

Summarizing, after the internal gauge field contri-
bution (G)Tµν has turned out to consist of two parts
(R)Tµν and (C)Tµν , the total energy momentum density
(T)Tµν (2.47) reads, in more detail,

(T)Tµν = (M)Tµν + (R)Tµν − (C)Tµν + (es)Tµν . (2.69)

Correspondingly, one expects the total energy func-
tional ET (2.46) to be of an analogous form,

ET = EM + ER − EC + Ees , (2.70)

with the obvious definitions of the corresponding energy
contributions

EM =
∫

d3�r (M)T00(�r ) (2.71a)

ER =
∫

d3�r (R)T00(�r ) (2.71b)

EC =
∫

d3�r (C)T00(�r ) (2.71c)

Ees =
∫

d3�r (es)T00(�r ). (2.71d)

A certain check for the correctness of the proposed energy
functional ET (2.70) can be performed for the one-particle
systems (N = 1), where exact solutions of the mass eigen-
value problem are available (see the discussion below).

However, in order to get a more detailed picture of the
interparticle interactions which are of course missing for
the one-particle systems, it is helpful to consider a higher
particle number N , preferably the most simple but non-
trivial one (i.e. N = 2).
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3 Two-particle systems

Concerning a test of the many-particle functional ET

(2.70) upon some exact N -particle solution, the situation
is not so favorable as with the one-particle systems. The
reason for this is twofold: first, exact solutions in analytic
form are not known for the relativistic many-particle sys-
tems (N ≥ 2) and second, even if they were known, the
corresponding field energy ET would not be directly re-
lated to the mass eigenvalues, as was the case with the one-
particle systems [23]. Indeed, since each of the mass eigen-
values (Ma; a = 1, . . . N) takes account of the internal in-
teractions of the a-th particle with all the other particles
b (�= a), the sum of the eigenvalues

∑
Ma would count the

interparticle interactions twice! Thus, for the N -particle
systems it is even more urgent to have an energy func-
tional than for the one-particle systems, where one could
be satisfied with determining the energy directly from the
eigenvalue equation in form of the mass eigenvalue. How-
ever, what can be checked also for the N -particle systems
is the non-relativistic limit which must agree with the
well-established non-relativistic many-particle theory. In
this sense, it will readily be demonstrated that the non-
relativistic limit of RST just coincides with the well-known
Hartree-Fock approach, so that RST in turn may be con-
ceived as the relativistic generalization of the latter ap-
proximation method.

3.1 Selection of the generators

As mentioned in connection with the compatibility theo-
rem (2.44)-(2.45), the generators τα of the original gauge
group U(N ) must be chosen in such a way that all the
diagonal elements of the compatibility tensor K are zero.
Therefore, we choose the N2 = 4 generators {τα} =
{τa, χ, χ̄} of the two-particle group U(2) in the following
way:

τ1 =
(
0 0
0 −i

)
, τ2 =

(
−i 0
0 0

)
,

χ =
(
0 −i
0 0

)
, χ̄ =

(
0 0
i 0

)
.

(3.1)

Their adjoint representatives {Cα} = {Ta,X , X̄ } obey
the same commutation relations as the original τα:

[τ1, τ2] = 0 , (3.2a)
[τ1, χ] = iχ , (3.2b)
[τ2, χ] = −iχ , (3.2c)
[χ, χ̄] = −i( τ1 − τ2 ) , (3.2d)

and therefore they can easily be written down in terms
of the structure constants Cγ

αβ (2.41) through the well-
known recipe

(Cα)βγ = Cγ
αβ . (3.3)

But once the (4 × 4)-matrices Cα have been specified in
this way, the compatibility condition (2.45) is easily seen

to admit the following solution:

K =




0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0


 . (3.4)

3.2 Currents

However, with the compatibility tensor K being known,
the relationship between the RST and the Maxwell cur-
rents (2.44) is also fixed and reads, for the present two-
particle case,

j1µ = − ′j2µ , (3.5a)

j2µ = − ′j1µ , (3.5b)

j3µ � hµ = − ′j4µ , (3.5c)

j4µ � −
∗
hµ = − ′j3µ . (3.5d)

Consequently, the current operator (s)Jµ (2.37) adopts the

following form in terms of the RST currents {jaµ, hµ,
∗
hµ}:

(s)Jµ = i
{
− j2µτ1 − j1µτ2 +

∗
hµχ− hµχ̄

}
(3.6)

≡ i
{
− k1µτ1 − k2µτ2 +

∗
hµχ− hµχ̄

}
,

where the single-particle currents kaµ are deduced from
the general definition of the RST currents jaµ (2.28a) in
the following way:

k1µ � j2µ =
i�

2Mc

{
ψ∗

1 (Dµψ1)− ψ1 (Dµψ
∗
1)
}
, (3.7a)

k2µ � j1µ =
i�

2Mc

{
ψ∗

2 (Dµψ2)− ψ2 (Dµψ
∗
2)
}
. (3.7b)

Similarly, the exchange current hµ appears here as the
two-particle realization of the general definition (2.28b):

hµ =
i�

2Mc

{
ψ∗

1 (Dµψ2)− ψ2 (Dµψ
∗
1)
}
. (3.8)

After the generators have been fixed, the covariant
derivatives of the components ψa (a = 1, 2) of the wave
function Ψ are defined here in a self-evident manner, i.e.
one puts

DµΨ =
(
Dµψ1

Dµψ2

)
. (3.9)

Furthermore, when the two-particle version of the general
connection (s)Aµ (2.36) is decomposed with respect to the
chosen basis set of generators (3.1) as

(s)Aµ = A1µτ1 +A2µτ2 +Bµχ−
∗
B µχ̄ , (3.10)

the covariant derivatives of the single-particle wave func-
tions (3.9) read

Dµψ1 = ∂µψ1 − i
(

(ex)Aµ +A2µ

)
ψ1 − iBµψ2 , (3.11a)

Dµψ2 = ∂µψ2 − i
(

(ex)Aµ +A1µ

)
ψ2 − i

∗
Bµψ1 . (3.11b)
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Naturally, the crucial point with the currents must re-
fer to the charge conservation laws. Consider first the con-
servation law in operator form (2.38) which by the split-
ting of Jµ (2.32) into an external and internal part also
splits up into the separate conservation of those parts:

Dµ (ex)Jµ = 0⇒ ∇µ (ex)jµ = 0 , (3.12a)

Dµ (s)Jµ = 0 . (3.12b)

Concerning the internal part (s)Jµ (3.6), one transcribes
the operator equation (3.12b) to the current components
and finds

∇µk1µ = i

(
hµBµ −

∗
hµ

∗
Bµ

)
, (3.13a)

∇µk2µ = −i
(
hµBµ −

∗
hµ

∗
Bµ

)
, (3.13b)

∇µhµ − i [A1µ −A2µ]hµ = i
∗
Bµ [k1µ − k2µ] , (3.13c)

∇µ
∗
h µ + i [A1µ −A2µ]

∗
hµ = −iBµ [k1µ − k2µ] . (3.13d)

These source equations own a very pleasant property,
namely adding up both eqs. (3.13a) and (3.13b) yields
the conservation law (2.7) with the total current jµ of the
two-particle system being defined by

jµ � k1µ + k2µ = −tr(s)Jµ , (3.14)

cf. (2.48). The differential law (2.7) may be converted also
into global form: ∫

(S)

jµ dSµ = z , (3.15)

which says that the particle number z (here z = 2) is in-
dependent of the choice of the hypersurface (S) in space-
time. Observe, however, that the single conservation law
(2.7) is not sufficient to fix the absolute magnitude of both
wave functions ψa(x) (a = 1, 2), so that one has to look
for further conservation laws of the kind (2.7); see the dis-
cussion below in connection with the Maxwell equations.

3.3 Bound states

For the stationary (bound) states, one tries the ansatz:

ψa(�r, t) = exp
[
−iMac

2

�
t

]
· ψa(�r ) , (3.16a)

(ex)Aµ(�r, t) = Aex(�r ) t̂µ , (3.16b)

Aa
µ(�r, t) = Aa(�r ) t̂µ , (3.16c)

Bµ(�r, t) = exp
[
−iM1 −M2

�
c2t

]
·B(�r ) t̂µ , (3.16d)

with the unit vector t̂µ (= ∂µt) pointing into the time
direction ( t̂µt̂µ = 1 ). Indeed with such an ansatz one

finds the current densities to be actually of the required
stationary form:

kaµ = ka(�r ) t̂µ , (3.17a)

hµ(�r, t) = exp
[
i
M1 −M2

�
c2t

]
· h(�r ) t̂µ , (3.17b)

provided one neglects the magnetic interactions between
the particles (which would require non-zero spatial compo-
nents of the vector potentials and current densities ). For
the subsequent discussion of the stationary states, we re-
strict ourselves to this electrostatic approximation where
we need to take into account exclusively the electrostatic
charge densities ka(�r ):

k1(�r ) =
�

Mc

{
M1c

�
+Aex(�r ) +A2(�r )

} ∗
ψ1(�r )ψ1(�r )

+
�

2Mc

{
B(�r )

∗
ψ1(�r )ψ2(�r ) +

∗
B(�r )

∗
ψ2(�r )ψ1(�r )

}
,

(3.18a)

k2(�r ) =
�

Mc

{
M2c

�
+Aex(�r ) +A1(�r )

} ∗
ψ2(�r )ψ2(�r )

+
�

2Mc

{ ∗
B(�r )

∗
ψ2(�r )ψ1(�r ) +B(�r )

∗
ψ1(�r )ψ2(�r )

}
,

(3.18b)

and the exchange density h(�r ):

h(�r ) =
{
M1 +M2

2M
+

�

2M

[
2Aex(�r ) +A1(�r ) +A2(�r )

]}

·
∗
ψ1(�r )ψ2(�r ) +

�

2Mc

∗
B(�r )

·
[ ∗
ψ1(�r )ψ1(�r ) +

∗
ψ2(�r )ψ2(�r )

]
. (3.19)

For the non-relativistic limit, to be discussed below,
one neglects all the potentials and approximates the mass
eigenvalues Ma (a = 1, 2) simply by the rest mass M of
the particles which then yields for the densities

k1(�r )⇒
∗
ψ1(�r )ψ1(�r ) , (3.20a)

k2(�r )⇒
∗
ψ2(�r )ψ2(�r ) , (3.20b)

h(�r )⇒
∗
ψ1(�r )ψ2(�r ) . (3.20c)

In this limit, one usually imposes the following orthonor-
mality conditions upon the non-relativistic wave func-
tions:∫

d3�r
∗
ψ1(�r )ψ1(�r ) =

∫
d3�r

∗
ψ2(�r )ψ2(�r ) = 1 , (3.21a)∫

d3�r
∗
ψ1(�r )ψ2(�r ) = 0 . (3.21b)
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This suggests that one has for the fully relativistic case
the analogous conditions∫

d3�r k1(�r ) =
∫

d3�r k2(�r ) = 1 , (3.22a)∫
d3�r h(�r ) = 0 . (3.22b)

Indeed this suggestion can readily be verified now by a
closer inspection of the gauge field dynamics.

3.4 Maxwell equations

Quite similarly as for the two-particle objects (s)Jµ (3.6)
and (s)Aµ (3.10), one puts for the two-particle field
strength (s)Fµν (2.19)

(s)Fµν = F1µντ1 + F2µντ2 +Gµνχ−
∗
G µν χ̄, (3.23)

where the curvature components are found to read, in
terms of the potentials, as follows:

F1µν = ∇µA1ν −∇νA1µ − i
[ ∗
BµBν −

∗
B νBµ

]
, (3.24a)

F2µν = ∇µA2ν −∇νA2µ + i
[ ∗
BµBν −

∗
B νBµ

]
, (3.24b)

Gµν = ∇µBν −∇νBµ

+i (A1µ −A2µ)Bν − i (A1ν −A2ν)Bµ , (3.24c)
∗
Gµν = ∇µ

∗
Bν −∇ν

∗
Bµ

−i (A1µ −A2µ)
∗
Bν + i (A1ν −A2ν)

∗
Bµ. (3.24d)

With this decomposition, the abstract Maxwell equations
(2.35) read, in component form,

∇µF1µν − i
[ ∗
BµGµν −Bµ

∗
G µν

]
= −4παsk1ν , (3.25a)

∇µF2µν + i

[ ∗
BµGµν −Bµ

∗
G µν

]
= −4παsk2ν , (3.25b)

∇µGµν + i (A µ
1 −A

µ
2 )Gµν

−iBµ [F1µν − F2µν ] = 4παs

∗
hν , (3.25c)

∇µ
∗
Gµν − i (A µ

1 −A
µ
2 )

∗
Gµν

+i
∗
Bµ [F1µν − F2µν ] = 4παshν . (3.25d)

This gauge field dynamics has some very pleasant proper-
ties to be discussed now in more detail.

First, add up both eqs. (3.24a) and (3.24b) in order to
see that the total field strength Fµν (2.51),

Fµν = F1µν + F2µν = i tr (s)Fµν , (3.26)

is actually generated by the total potential Aµ (2.62):

Aµ = A1µ +A2µ = i tr (s)Aµ , (3.27)

according to the curl relation (2.61a) and therefore it
obeys the Bianchi identity (2.60a). Furthermore, adding
up both Maxwell equations (3.25a) and (3.25b) says that
the total field Fµν (3.26) is actually generated by the total
current jµ (3.14) in agreement with the former Maxwell
equation (2.52). Obviously, these total objects Fµν and
jµ describe the overall properties of the two-particle sys-
tem when its internal structure is neglected. For this
reason, the present two-particle equations (2.52), (2.60a)
and (2.61a) are formally the same as for the one-particle
systems [25]. This circumstance is then transferred also to
the force densities (ex)fν (2.26) and (xe)fν (2.54) which
thus look identical for all particle numbers N . This may
be interpreted in the sense that the handle of the two-
particle system for being acted upon by the external-field
strength (ex)Fµν is just its total current jµ (3.14); and
conversely the two-particle system acts back upon the ex-
ternal source via its total field strength Fµν (3.26) entering
the force density (xe)fν (2.54). Naturally, the energy mo-
mentum content due to this interactive system is described
by the two-particle tensor (es)Tµν (2.59) which thus looks
identical for all particle numbers N .

Next, consider the problem of fixing the “absolute
magnitude” of the wave functions ψa(x), (a = 1, 2), i.e.
the problem of the normalization conditions. In the rel-
ativistic context, one would like to have two four-vector
fields laµ ( a = 1, 2), as functionals of the wave functions
ψa, obeying the conservation laws

∇µlaµ = 0 . (3.28)

Indeed, this then would allow us to impose the normaliza-
tion conditions (a = 1, 2)∫

(S)

laµ dSµ = 1 , (3.29)

independently of the chosen hypersurface (S). However,
such vector fields laµ are actually obtainable, namely by
means of the observation that the right-hand sides of the
source equations (3.13a) and (3.13b) can be recast into
the form of a divergence of some vector field Gµ:

∗
hµ

∗
B µ − hµBµ = −i∇µGµ . (3.30)

The solution of this equation for Gµ is

Gµ =
i

4παs

( ∗
BνGµν −Bν

∗
Gµν

)
, (3.31)

which can easily be verified by straightforward differenti-
ation and use of eqs. (3.24c)-(3.24d) and (3.25c)-(3.25d).
Consequently, the substitution of the result (3.30) into
the source equations (3.13a)-(3.13b) yields just the two
desired conservation laws, necessary for the normalization
of the wave functions via (3.29), namely:

∇µl1µ ≡ ∇µ (k1µ +Gµ) = 0 , (3.32a)
∇µl2µ ≡ ∇µ (k2µ −Gµ) = 0 . (3.32b)
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For the stationary states, one will resort again to the
electrostatic approximation (3.16b)-(3.16d) which implies
the vanishing of the time component of the “entanglement
vector” Gµ (3.31). Therefore, the general normalization
conditions (3.29) degenerate into their static form (3.22a)
which thus receives its legitimation. Moreover, the rela-
tivistic orthogonality condition (3.22b) can also be vali-
dated for the electrostatic approach. In order to demon-
strate this, observe that the Maxwell equations (3.25a)-
(3.25d) for the curvature components Faµν , Gµν tran-
scribe to the static potentials Aa(�r ), B(�r ) (3.16c)-(3.16d)
in form of the Poisson equations:

∆Aa(�r ) = 4παska(�r ) , (3.33a)

∆B(�r ) = −4παs

∗
h(�r ) , (3.33b)

with the corresponding solutions:

Aa(�r ) = −αs

∫
d3�r ′ ka(�r ′)

|�r − �r ′| , (3.34a)

B(�r ) = αs

∫
d3�r ′

∗
h(�r ′)
|�r − �r ′| . (3.34b)

On the other hand, the stationary form of the source
eq. (3.13c) for the exchange current hµ reads:

M1 −M2

�
c · h(�r ) =

[
A1(�r )−A2(�r )

]
h(�r )

+
∗
B(�r )

[
k1(�r )− k2(�r )

]
. (3.35)

Now, integrating this equation over the whole three-
space with use of the potentials Aa(�r ) (3.34a) and B(�r )
(3.34b) directly leads to the relativistic orthogonality
claim (3.22b) which thus receives its rigorous proof.

3.5 Hartree-Fock equations

With the stationary form of the gauge field configurations
being at hand now, it is a rather straightforward matter
to deduce the well-known Hartree-Fock equations from
the Klein-Gordon equation (2.6). This equation reads,
for the present two-particle systems in component form
(a = 1, 2),

DµDµψa +
(
Mc

�

)2

ψa = 0 , (3.36)

with the covariant derivatives of the wave functions ψa

being specified by the former equations (3.11a)-(3.11b).
For the stationary field configurations (3.16a)-(3.16d), the
KGEs (3.36) adopt the following form:

−�
2

2M
∆ψ1(�r ) + V11 · ψ1(�r ) + V12 · ψ2(�r ) =

M2
1 −M2

2M
c2 · ψ1(�r ) , (3.37a)

−�
2

2M
∆ψ2(�r ) + V21 · ψ1(�r ) + V22 · ψ2(�r ) =

M2
2 −M2

2M
c2 · ψ2(�r ) . (3.37b)

Here the Hermitian potential matrix Vab(= V ∗
ba) is given

in terms of the static gauge potentials Aa(�r ) and B(�r )
through

V11(�r ) = −
�

2

2M

[(
M1c

�
+Aex(�r ) +A2(�r )

)2

−
(
M1c

�

)2

+
∗
B(�r )B(�r )

]
, (3.38a)

V12(�r ) = −
�

2

2M
B(�r )

[
M1 +M2

�
c

+2Aex(�r ) +A1(�r ) +A2(�r )
]
, (3.38b)

V21(�r ) = −
�

2

2M

∗
B(�r )

[
M1 +M2

�
c

+2Aex(�r ) +A1(�r ) +A2(�r )
]
, (3.38c)

V22(�r ) = −
�

2

2M

[(
M2c

�
+Aex(�r ) +A1(�r )

)2

−
(
M2c

�

)2

+
∗
B(�r )B(�r )

]
. (3.38d)

The non-linearly coupled Klein-Gordon system
(3.37a)-(3.37b) represents the relativistic eigenvalue
problem which is to be solved for the mass eigenvalues
Ma (a = 1, 2) and thus is to be considered as the most
immediate two-particle generalization of the one-particle
case [25]. In contrast to the one-particle situation, the
present two-particle system is highly non-linear, cf. the
RST potentials Aa(�r ) and B(�r ) (3.34a)-(3.34b), and
therefore one must impose the normalization conditions
(3.22a) in order to make the solutions unique.

The Hartree-Fock equations, as the non-relativistic
limit of the RST system (3.37a)-(3.37b), do emerge now
quite similarly as the one-particle Schrödinger equation
arises from the stationary Klein-Gordon equation [2]:
namely by neglecting all squares of potentials Aex, Aa, B
for the potential matrix Vab (3.38a)-(3.38d) and further-
more by replacing the mass eigenvalues Ma by the rest
mass M of the particles which yields then ultimately

V11 ⇒ −�cAex(�r ) + e2
∫

d3�r ′ |ψ2(�r ′)|2
|�r − �r ′| , (3.39a)

V12 ⇒ −e2
∫

d3�r ′
∗
ψ2(�r ′)ψ1(�r ′)
|�r − �r ′| , (3.39b)

V21 ⇒ −e2
∫

d3�r ′
∗
ψ1(�r ′)ψ2(�r ′)
|�r − �r ′| , (3.39c)

V22 ⇒ −�cAex(�r ) + e2
∫

d3�r ′ |ψ1(�r ′)|2
|�r − �r ′| . (3.39d)

Here we have retained only the terms linear in the poten-
tials Aa, B (3.34a)-(3.34b) and simultaneously we have
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replaced the relativistic densities ka(�r ) by their non-
relativistic limits (3.20a)-(3.20c). When we now introduce
the non-relativistic energy eigenvalues Ea in the same way
as for the one-particle systems [24], i.e. when we approx-
imate the right-hand sides of the relativistic eigenvalue
equations (3.37a)-(3.37b) by

M2
a −M2

2M
⇒ Ea , (3.40)

then the relativistic system reappears in the form of the
well-known Hartree-Fock equations:

− �
2

2M
∆ψ1(�r )− �cAex(�r ) · ψ1(�r )

+e2
∫

d3�r ′ |ψ2(�r ′)|2
|�r − �r ′| · ψ1(�r )

−e2
∫

d3�r ′
∗
ψ2(�r ′)ψ1(�r ′)
|�r − �r ′| · ψ2(�r ) = E1ψ1(�r ) , (3.41a)

− �
2

2M
∆ψ2(�r )− �cAex(�r ) · ψ2(�r )

+e2
∫

d3�r ′ |ψ1(�r ′)|2
|�r − �r ′| · ψ2(�r )

−e2
∫

d3�r ′
∗
ψ1(�r ′)ψ2(�r ′)
|�r − �r ′| · ψ1(�r ) = E2ψ2(�r ) . (3.41b)

Clearly, for solving the latter non-relativistic system
(3.41a)-(3.41b), one will apply the non-relativistic or-
thonormalization conditions (3.21a)-(3.21b), whereas the
solution of the fully relativistic system (3.37a)-(3.37b) re-
quires application of the relativistic orthonormalization
conditions (3.22a)-(3.22b)!

3.6 Energy functional

The scientific value of a theory is always measured by the
truth of its experimental predictions, and thus one has
to inspect now the energy levels ET (2.70) predicted by
the present two-particle theory. Since this total energy ET

consists of four contributions, we will consider now each
part separately.

First, let us turn to the matter part EM which is
present already for the one-particle systems, but whose
energy density (M)T00(�r ) must now be deduced from the
general tensor (M)Tµν (2.14):

(M)T00 =
�

2

2M

{
(D0Ψ̄)(D0Ψ)

+
3∑

j=1

(DjΨ̄)(DjΨ) +
(
Mc

�

)2

Ψ̄Ψ

}
. (3.42)

For the stationary configurations (3.16a)- (3.16d), one can
easily verify that the covariant time derivatives obey the
relation

(D0Ψ̄)(D0Ψ) = −Ψ̄(D0D0Ψ) , (3.43)

and this provides us with the possibility to eliminate the
time derivatives completely from the matter energy EM

(2.71a); namely by multiplying through the Klein-Gordon
equation (2.6)

D0D0Ψ −∆Ψ +
(
Mc

�

)2

Ψ = 0 (3.44)

with the Hermitian conjugate Ψ̄ and by subsequent partial
integration which ultimately yields

EM =Mc2
∫

d3�r Ψ̄Ψ + 2
�

2

2M

∫
d3�r �∇Ψ̄ · �∇Ψ . (3.45)

Obviously, this two-particle matter energy EM is the
sum of the two single-particle contributions EM(a):

EM =
2∑

a=1

EM(a) , (3.46a)

EM(a) = Mc2
∫

d3�r
∗
ψa(�r )ψa(�r )

+2
�

2

2M

∫
d3�r �∇

∗
ψa(�r ) · �∇ψa(�r ) . (3.46b)

Comparing this result to the corresponding one-particle
case [25], one realizes that there emerges again the same
“pseudo-problem” of an additional factor of two in front
of the kinetic energies 〈Ta〉:

EM(a) =Mc2 · Z2
a + 2〈Ta〉 , (3.47)

where some self-evident definitions have been used:

Z2
a �

∫
d3�r

∗
ψa(�r )ψa(�r ) , (3.48a)

〈Ta〉 � �
2

2M

∫
d3�r �∇

∗
ψa(�r ) · �∇ψa(�r ) . (3.48b)

However, it should be a matter of course that this “prob-
lem” for the two-particle systems is resolved in the same
way as for the one-particle systems, see ref. [25]. In-
deed, if the correct relativistic normalization conditions
(3.22a) are applied, the higher-order approximations for
the renormalization constants Za (3.48a) read, in analogy
to the one-particle case,

Z2
a � 1− 〈Ta〉

Mc2
, a = 1, 2 (3.49)

and this yields again the correct non-relativistic limit of
the matter energies EM(a) (3.47):

EM(a)⇒Mc2
(
1− 〈Ta〉

Mc2

)
+2〈Ta〉 =Mc2+〈Ta〉. (3.50)

Thus, one obtains the relativistic matter energy EM by
substituting the solutions ψa of the RST system (3.37a)-
(3.37b) into the relativistic energy functional EM (3.46a)-
(3.46b); but when one is satisfied with the non-relativistic
approximation, one takes the values of the non-relativistic
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functionals (3.50) upon the solutions of the Hartree-Fock
equations (3.41a)-(3.41b).

Next, consider the contribution Ees (2.71d) to the to-
tal energy ET (2.70) which is due to the interaction of
the two-particle system with the external source (ex)jµ
and which therefore is also present already for the one-
particle systems. Transferring this kind of energy content
Ees to the two-particle systems, one has to deduce the
corresponding energy density (es)T00(�r ) from the energy
momentum tensor (es)Tµν (2.59) which however looks for-
mally identical to its one-particle analogue because it is
built up exclusively by the overall objects Fµν and (ex)Fµν .
The difference of both cases is simply that the system’s
total field Fµν (2.51) is generated by only one particle in
the first case according to the Maxwell equation (2.52),
whereas for the second case it is the sum of two single-
particle contributions F a

µν (3.26), which, according to the
Maxwell equation (2.52), has as its source just the sum
jµ (3.14) of the two single-particle currents kaµ. There-
fore, the one-particle result for Ees can be immediately
transcribed to the two-particle situation and thus looks
as follows:

Ees = −�c

∫
d3�r Aex(�r ) {k1(�r ) + k2(�r )} (3.51)

≡ Ees(1) + Ees(2) .

This external energy functional Ees applies again to
the solutions of the RST system (3.37a)-(3.37b); but
when one is satisfied with the non-relativistic case of the
Hartree-Fock equations (3.41a)-(3.41b), one can resort to
the non-relativistic limit of the charge densities ka(�r )
(3.20a)-(3.20b) and thus one obtains the non-relativistic
limit of the external interaction energy Ees (3.51) as

Ees ⇒ −�c

∫
d3�r Aex(�r )

{
|ψ1(�r )|2 + |ψ2(�r )|2

}
. (3.52)

For instance, for the binding Coulomb potential

Aex(�r )⇒ zex
αs

r
, (3.53)

one obtains the sum of its expectation values relative to
both quantum states ψ1 and ψ2:

Ees ⇒ −zexe2
∫

d3�r
|ψ1(�r )|2 + |ψ2(�r )|2

r
. (3.54)

Finally, the internal gauge field energy EG, due to
(G)Tµν (2.63), must be considered. Since this kind of en-
ergy describes the internal interactions of the system’s
particles, it has no analogue for the one-particle systems.
The reason is that in RST the self-interactions of the par-
ticles are avoided and therefore there must be present at
least two particles in order that a non-trivial energy con-
tribution can arise. The energy EG itself consists of two
parts:

EG = ER − EC (3.55)

with the energy content ER of the real gauge field modes
being given by eq. (2.71b) and that of the complex modes

EC by (2.71c). First, consider the real modes whose en-
ergy density (R)T00(�r ) is to be deduced from the general
tensor (R)Tµν(�r ) (2.67) which yields, in the electrostatic
approximation,

(R)T00 = − �c

4παs
F10λF20

λ . (3.56)

Now, remember here the link of the electromagnetic
field strengths Faµν to the potentials Aaµ (3.24a)-(3.24b)
which, under neglection of the magnetic forces, simplifies
to

Fa0j = −∂jAa(�r ) , (3.57)

so that the energy density (R)T00 (3.56) reads, in terms of
the electrostatic potentials Aa(�r ),

(R)T00 =
�c

4παs

�∇A1(�r ) · �∇A2(�r ) . (3.58)

Consequently, the energy ER (2.71b) located in the real
modes of the internal gauge field becomes, by partial in-
tegration and use of the Poisson equations (3.33a),

ER = −�c

∫
d3�r A1(�r ) · k2(�r ) , (3.59)

or, when the solutions (3.34a) for the static potentials
Aa(�r ) are inserted,

ER = e2
∫∫

d3�r d3�r ′ k1(�r ) · k2(�r ′)
|�r − �r ′| . (3.60)

This energy functional refers again to the solutions of the
RST system (3.37a)-(3.37b), but when one is satisfied with
the Hartree-Fock equations (3.41a)-(3.41b), one can resort
again to the non-relativistic limit (3.20a)-(3.20b) of the
charge densities ka(�r ) and then one writes down the cor-
responding non-relativistic form of the energy functional
ER (3.60) as

ER ⇒ e2
∫∫

d3�r d3�r ′ |ψ1(�r )|2 · |ψ2(�r ′)|2
|�r − �r ′| . (3.61)

Evidently, this is just the classical electrostatic interac-
tion energy of the charge clouds generated by the two
wave functions ψ1(�r ) and ψ2(�r ) and thus meets with our
intuitive non-relativistic expectations.

Finally, consider the energy content EC (2.71c) of the
complex field modes and observe that this kind of en-
ergy owns the status of an exchange energy and thus is
a truly non-classical phenomenon. Restricting ourselves
again to the electrostatic approximation, the correspond-
ing energy density (C)T00(�r ) is deduced from the general
tensor (C)Tµν (2.68) as

(C)T00(�r ) =
�c

4παs

3∑
j=1

∗
G0jG0j . (3.62)
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Here, the exchange field strengths G0j can be expressed
in terms of the exchange potential B(�r ) via the general
definition (3.24c) as

G0j = − exp
(
−iM1 −M2

�
c2t

)
· ∂jB(�r ) , (3.63)

which simplifies again the energy density (C)T00 (3.62)
into

(C)T00(�r ) =
�c

4παs

�∇
∗
B(�r ) · �∇B(�r ) . (3.64)

Thus, the desired exchange energy EC (2.71c) becomes,
by means of partial integration and use of the Poisson
equation (3.34b),

EC = �c

∫
d3�r

∗
B(�r )h∗(�r ) = e2

∫∫
d3�r d3�r ′h

∗(�r )h(�r ′)
|�r − �r ′| .

(3.65)
Observing here the non-relativistic limit (3.20c) of the ex-
change density h(�r ) lets us arrive at the Hartree-Fock ap-
proximation of the exchange energy EC:

EC ⇒ e2
∫∫

d3�r d3�r ′
∗
ψ2(�r )ψ1(�r )

∗
ψ1(�r ′)ψ2(�r ′)

|�r − �r ′| . (3.66)

Since this exchange energy enters the internal gauge field
energy EG (3.55) with a minus sign, we ultimately arrive
at its non-relativistic limit:

EG ⇒ e2
∫∫

d3�rd3�r ′

×
∗
ψ1(�r )ψ1(�r )

∗
ψ2(�r ′)ψ2(�r ′)− ψ1(�r )

∗
ψ1(�r ′)ψ2(�r ′)

∗
ψ2(�r )

|�r − �r ′| ,

(3.67)

which is a well-known result of first-order perturbation
theory for the interelectronic interactions in a helium
atom.

Collecting the results, one finds the RST energy func-
tional ET to be of the following form:

ET = EM +ER − EC + Ees =

Mc2
2∑

a=1

Z2
a + 2

�
2

2M

2∑
a=1

∫
d3�r �∇

∗
ψa(�r ) · �∇ψa(�r )

+e2
∫∫

d3�r d3�r ′ k1(�r ) · k2(�r ′)−
∗
h(�r ) · h(�r ′)

|�r − �r ′|

−�c

∫
d3�r Aex(�r )

(
k1(�r ) + k2(�r )

)
. (3.68)

This energy functional is due to the RST eigenvalue
system (3.37a)-(3.37b); however, when one is satisfied
with the (non-relativistic) Hartree-Fock equations (3.41a)-
(3.41b) one must resort to the corresponding Hartree-Fock
functional EHF as the non-relativistic limit of the RST

functional ET (3.68):

ET ⇒ EHF = 2Mc2 +
�

2

2M

2∑
a=1

∫
d3�r �∇

∗
ψa(�r ) · ψa(�r )

+e2
∫∫

d3�r d3�r ′

×|ψ1(�r )|2 · |ψ2(�r ′)|2 −
∗
ψ2(�r )ψ1(�r )

∗
ψ1(�r ′)ψ2(�r ′)

|�r − �r ′|

−�c

∫
d3�r Aex

(
|ψ1(�r )|2 + |ψ2(�r )|2

)
. (3.69)

3.7 One-particle systems

Although the construction of the energy functional ET has
been performed along the generally accepted elements of
relativistic field theory, one nevertheless wishes to have
some kind of test of its physical truth. For such a purpose,
the one-particle systems are well suited because here the
two-particle eigenvalue system (3.37a)-(3.37b) degener-
ates to the ordinary (stationary) Klein-Gordon equation,
whose solutions are known in analytic form. Consequently,
one can compute the value of the proposed energy func-
tional ET upon those exact solutions of the one-particle
theory and can then check whether the field energy ET

actually coincides with the mass eigenvalue (M∗c2, say).
More concretely, extract the one-particle situation of

the present two-particle case by putting

ψ2(�r ) = A1(�r ) = A2(�r ) = B(�r ) ≡ 0 , (3.70a)
ψ1(�r ) � ψ(�r ) (3.70b)

and find the corresponding one-particle KGE from the
RST system (3.37a)-(3.37b) as

−�
2

2M
∆ψ(�r ) + V11(�r ) · ψ(�r ) =

M2
∗−M2

2M
c2 · ψ(�r ) (3.71)

with the remaining potential V11(�r ) being cut down to

V11(�r )⇒ −
�

2

2m

[(
M∗c

�
+Aex(�r )

)2

−
(
M∗c

�

)2
]
.

(3.72)
For the Coulomb potential (3.53), the exact solutions of
the one-particle eq. (3.71) are well known and presented
in any textbook (e.g., ref. [2]). The relativistic normaliza-
tion condition for the one-particle solutions ψ(�r ) is to be
deduced from (3.22a) as∫

d3�r k(�r ) = 1 . (3.73)

Here the charge density k(�r ) is obtained from (3.18a) by
applying the cutting prescription (3.70a)-(3.70b):

k(�r ) =
�

Mc

(
M∗c

�
+Aex(�r )

) ∗
ψ(�r )ψ(�r ) . (3.74)
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A similar simplification occurs also for the RST energy
functional ET (3.68) which reduces to the sum of matter
energy (EM) and external interaction energy (Ees):

ET[ψ]⇒ EM[ψ] + Ees[ψ]

= Mc2Z2
∗ + 2

�
2

2M

∫
d3�r �∇

∗
ψ(�r ) · �∇ψ(�r )

−�c

∫
d3�r Aex(�r ) · k(�r ) . (3.75)

A very pleasant feature of this energy functional is now
that its value upon the eigensolutions ψM∗(�r ) of the
eigenvalue problem (3.71) exactly yields the corresponding
mass eigenvalue M∗:

ET[ψM∗ ] =M∗c2 . (3.76)

This result holds for any member of the mass spec-
trum {M∗}, due to an arbitrary binding poten-
tial Aex(�r ) [25], and thus supports the confidence into
the RST energy functional ET (3.68).

Observe, however, that the numerical identity (3.76)
of field energy ET and mass eigenvalue M∗ can hold
only for the one-particle systems; or, more concretely,
the many-particle energy ET cannot agree with the sum
of mass eigenvalues! In order to see this more clearly
for the present two-particle systems, one may reformu-
late the energy ET (3.68) in terms of the mass eigenval-
ues Ma (a = 1, 2) so that the difference becomes obvious.
To this end, one returns for a moment to the matter en-
ergy density (M)T00 (3.42) and uses the relations (3.43)
and (3.44) in order to eliminate from the corresponding
matter functional EM (2.71a) the spatial derivatives of
the wave function Ψ , so that one finally ends up with the
following form:

EM =
�

M

∫
d3�r

(
D0Ψ̄

)
(D0Ψ) . (3.77)

Next, one resorts here to the component form (3.11a)-
(3.11b) of the covariant derivatives and thus finds for the
stationary-field configuration (3.16a)-(3.17b)

�
2

M

(
D0Ψ̄

)
· (D0Ψ) =

[
M1c

�
+Aex(�r ) +A2(�r )

]
· k1(�r )

+
[
M2c

�
+Aex(�r ) +A1(�r )

]
· k2(�r )

+�c
(
B(�r )h(�r ) +

∗
B(�r )

∗
h(�r )

)
. (3.78)

This result helps now putting the matter integral (3.77)
into a very concise form, namely by inserting the static
potentials Aa(�r ), B(�r ) (3.34a)-(3.34b) and afterwards ob-
serving the energy functionals Ees (3.51), ER (3.59)
and EC (3.65) together with the normalization condi-
tions (3.22a) for the charge densities ka(�r ). This proce-
dure ultimately leads us to the following form of the mat-
ter energy EM (3.77):

EM =M1c
2 +M2c

2 − Ees − 2EG . (3.79)

If this is substituted now into the total func-
tional ET (2.70), we arrive at the desired result

ET =M1c
2 +M2c

2 − EG . (3.80)

Obviously, the total energy ET is not simply the sum of
mass eigenvalues Mac

2, but the gauge field energy EG (=
ER−EC) must be subtracted. Indeed, this is a very plausi-
ble result because either of the two RST eigenvalue equa-
tions (3.37a)-(3.37b) takes account of the interelectronic
interactions whose energy content enters therefore both
mass eigenvalues M1 and M2. In order to annihilate this
double counting of the interaction energy EG, one has
to subtract it from the sum of eigenvalues as shown in
eq. (3.80).

4 Numerical results

In order to evaluate the significance of RST for the rela-
tivistic effects, it is instructive to apply the preceding two-
particle results to the helium atom. Here, one can compare
the RST predictions for the energy levels ET (3.68) with
the corresponding predictions EHF (3.69) of the Hartree-
Fock approach in order to relate both to the observa-
tional data. However, such a comparison presents a certain
problem because the two electrons of a real helium atom
are spin- 12 particles, obeying the Pauli exclusion principle,
whereas the preceding RST and HF results refer to scalar
particles. This circumstance requires some explanation.

First observe here that, in terms of the conventional
theory, our scalar RST particles have to be described by
anti-symmetric states corresponding to the Hartree-Fock
ansatz

Ψ(�r1, �r2) =
1√
2
(ψI(�r1)ψII(�r2)− ψII(�r1)ψI(�r2)) (4.1)

with orthonormal wave functions (3.21a)-(3.21b),∫
d3�r |ψI(�r )|2 =

∫
d3�r |ψII(�r )|2 = 1 , (4.2a)∫

d3�r
∗
ψI(�r )ψII(�r ) = 0 . (4.2b)

Such a procedure is justified when one is willing to ne-
glect the spin interactions, because in this case the total
anti-symmetric wave function factorizes into the space and
spin parts, and when the spin part is symmetric the spa-
tial part must be anti-symmetric (ortho-level system) in
agreement with the spin-statistics theorem. Thus, when
scalar RST is considered as the relativistic generalization
of the scalar HF approach, the preceding RST results pro-
vide us with the possibility to study the relativistic effects
in the ortho-level system of helium, albeit under neglec-
tion of the spin effects (i.e. fine structure). The para-level
system may be treated within the framework of RST by
simply omitting all the exchange terms occurring for the
ortho-level system; i.e. the Hartree-Fock approach is sub-
stituted by the simpler Hartree approximation albeit in
relativistic form.
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4.1 One-particle spectrum

But even under neglection of the fine structure of the
spectral lines, one cannot expect coincidence of the RST
predictions with the experimental data. The reason is
that a considerable part of the two-particle energy ET

consists in the sum of the one-particle energy eigenval-
ues Mac

2 (a = 1, 2), and the relativistic corrections of
these single-particle mass eigenvalues are considerably dif-
ferent for spin-0 and spin-12 particles. For instance, for
the Coulomb potential (3.53) one finds the single-particle
ground-state energy ET =M∗c2 as [26]

M∗ =




M

√
1
2 +

√
( 1
2 )

2 − (zexαs)2 =

M
(
1− 1

2z
2
exα

2
s− 1

4z
4
exα

4
s . . .

)
, spin-0 ,

M
√

1− (zexαs)2 =
M

(
1− 1

2z
2
exα

2
s− 1

8z
4
exα

4
s

)
, spin- 12 .

(4.3)
Here the upper case (spin-0) is the ground-state mass
eigenvalue due to the stationary Klein-Gordon equa-
tion (3.71) for scalar particles; and, similarly, the lower
case refers to the corresponding Dirac equation for spin-12
particles.

Observe now that the Schrödinger energy eigen-
value ES, as the non-relativistic limit of the mass de-
fect, is actually the same for the bosonic and fermionic
result (4.3):

ES = (M∗ −M) c2 ≈ −1
2
z2exα

2
sMc2 = −z

2
exe

4M

2�2
(4.4)

but already the next higher relativistic correction
(� z4exα

4
s ) differs by a factor of two for both cases! Fur-

thermore, the one-particle theories break down for dif-
ferent nuclear-charge numbers zex, namely the bosonic
case for zex = (2αs)−1 ≈ 68 and the fermionic case
for zex ≈ 137 (see fig. 1). Therefore, it must appear as
rather amazing that the present scalar RST predicts the
two-particle spectrum in relatively good agreement with
the experimental data for fermions for a restricted range
of charge numbers zex (see fig. 4 above).

4.2 Two-particle spectrum

The existence of a singular endpoint (with vertical tan-
gent in fig. 1) of the one-particle spectrum gives a hint
on the qualitative features of the RST two-particle spec-
trum {ET} (3.68). The numerical solutions of the RST
system (3.37a)-(3.37b) demonstrate that the mutual inter-
action energy EG (3.55) of the two electrons becomes dom-
inated more and more by the sum of matter energy EM

(3.46a)-(3.46b) and external interaction energy Ees (3.51),
when the charge number zex is increased. On the other
hand, either of these two types of energy contributions is
the sum of the corresponding one-particle energies EM(a)
and Ees(a) and therefore the characteristics of the one-
particle spectrum must dominantly enter also the two-
particle spectrum. This especially means that we have to

expect the emergence of a singular endpoint for the two-
particle spectrum, similarly to the one-particle situation
of fig. 1.

Unfortunately, our numerical integrations of the rel-
ativistic two-particle equations (3.37a)-(3.37b) become
spoiled by computational problems when the charge num-
ber zex tends to the critical one-particle value (i.e.
zex ≈ 68); but the tendency of the two-particle spectrum
to develop singular endpoints becomes evident already
from our numerical results reaching up to zex ≈ 60 (see
fig. 2). Observe here that the development of such singular
endpoints is a truly relativistic effect which does not occur
for the non-relativistic HF approach (curve (b) of fig. 2).
On the other hand, the RST and HF predictions become
identical for sufficiently weak external fields (zex � 20,
say). Evidently, this limit behavior for zex � 20 and
zex � 60 is sufficient to conclude that the relativistic two-
particle energy ET (3.68) is always smaller than its HF
counterpart EF (3.69): ET < EHF (i.e. the relativistic
binding energy |ET − 2Mc2| is always greater than its
non-relativistic counterpart |EHF| (3.69)). Since this rela-
tivistic effect is overestimated by the scalar theory (Klein-
Gordon) in comparison to the spinor theory (Dirac), see
fig. 1, the spinor predictions for the helium spectrum will
be found to be closer to the experimental data, of course
under neglection of the fine structure (see fig. 5).

4.3 Scalar wave functions and densities

Looking for an explanation for the relativistic enhance-
ment of the two-particle binding energies (fig. 2) one will
have to study the relativistic deformation of the wave
functions. Here it is important to observe that both the
RST and HF spectrum can be classified by pairs of one-
particle states because when one switches off continuously
the interelectronic interactions (i.e. putting in (3.38a)-
(3.38d): A1(�r ) ⇒ 0, A2(�r ) ⇒ 0, B(�r ) ⇒ 0), then one
ends up with a pair of ordinary KGEs as displayed by
eq. (3.71). Of course, the non-relativistic limit thereof is
the ordinary Schrödinger equation

− �
2

2M
∆ψ(�r )− �cAex(�r ) · ψ(�r ) = Eψ(�r ) . (4.5)

Using this “pair classification”, the results of fig. 2 refer
to the (1s, 2s) pair of KGE states (3.71) for RST and to
the corresponding Schrödinger states (4.5) for HF. When
the interparticle interactions are neglected, both kinds of
solutions are known in analytic form [2] and can therefore
be used as the starting points for the iteration process in
order to solve our RST system (3.37a)-(3.37b) or its non-
relativistic version (3.41a)-(3.41b), respectively. Thus, the
selected relativistic wave functions ψ̃a of lowest order are

1s: ψ̃1 = Ñ1 y
ν exp

(
− y
η1

)
, (4.6a)

2s: ψ̃2 = Ñ2 y
ν(y∗ − y) exp

(
− y
η2

)
. (4.6b)
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Here we have rescaled the radial variable r to the dimen-
sionless y through

y =
zexr

aB
, (4.7)

where aB is the Bohr radius

aB =
�

2

Me2
. (4.8)

The exponential parameter ν is found to be negative,

ν = −1
2

(
1−

√
1− (2zexαs)2

)
, (4.9)

but it generates merely a weak singularity for the wave
functions at the origin (r = 0) so that the energy func-
tionals remain well defined. The widths ηa of the wave
functions are given by (a = 1, 2)

ηa =
M

M̃a

(ν + a) (4.10)

and the zeroth-order mass eigenvalues M̃a by

M̃a =
M√√√√√√√

1 +
z2exα

2
s

a− 1
2
+

√(
1
2

)2

− z2exα2
s




2

. (4.11)

Finally, the zero y∗ of the first-excited state ψ̃2 (4.6b) is

y∗ = η2(1 + ν) (4.12)

and the normalization constants Ña can be determined
from (3.22a), e.g. for the ground state:

Ñ2
1 =

22+2ν

4πη2+2ν
1 Γ (2 + 2ν) [(1 + ν)2 + z2exα2

s ]
. (4.13)

The pair of relativistic wave functions ψ̃a(�r ) (4.6a)-
(4.6b) may be used as the point of departure for iteratively
solving the RST system (3.37a)-(3.37b), but when one is
satisfied with the non-relativistic HF equations (3.41a)-
(3.41b), it is more adequate to resort to the non-relativistic
counterpart (

◦
ψ, say) of those relativistic functions ψ̃a:

ψ̃1(�r )⇒
◦
ψ1(�r ) =

√
zex
πa3

B

exp(−y) , (4.14a)

ψ̃2(�r )⇒
◦
ψ2(�r ) =

√
zex
8πa3

B

(
1− y

2

)
exp

(
−y
2

)
. (4.14b)

Clearly, these are solutions of the ordinary Schrödinger
equation (4.5), but their deviation from the relativistic
solutions ψ̃a(�r ) (4.6a)-(4.6b) is very small and is hardly
enhanced by the numerical iteration procedure so that the
RST solutions of the relativistic system (3.37a)-(3.37b)
remain very close to the corresponding solutions of the
non-relativistic HF system (3.41a)-(3.41b).

However, the charge densities ka(�r ) (3.18a)-(3.18b)
and the exchange density h(�r ) (3.19) are more sensible
with respect to the relativistic effect. Since these densities
directly enter the relativistic energy functional ET (3.68),
the enhancement of the binding energy must be due to
their relativistic deformation. Indeed fig. 3 shows a plot of
the second charge density k2(�r ) for the (1s, 2s) state from
which it is clearly seen that the RST density (curve (a))
is shifted towards the origin (r = 0) in comparison to
its HF counterpart (curve (b)). The same effect occurs
also for the other densities k1(�r ) and h(�r ). As a conse-
quence of this relativistic shrinking of the extension of
the charge distributions, the negative electrostatic inter-
action energy Ees (3.51) becomes dominantly smaller and
therefore responsible for the observed enhancement of the
(1s, 2s) binding energy, fig. 2.

4.4 Spectral lines

The most immediate test of the theoretical predictions
naturally must refer to the frequencies of the photons
which are emitted during the transitions between the sta-
tionary states. For the present test of scalar RST, we re-
strict ourselves to the transition from the (1s, 2s) state of
the ortho-helium to the (1s, 1s) state of the para-system.
Observe that the present scalar RST can refer to both
the para- and ortho-system where, under neglect of the
magnetic (i.e. spin) interactions, the space parts of the
conventional quantum states are anti-symmetric so that
the exchange terms enter the HF equations with a mi-
nus sign, cf. (3.41a)-(3.41b). However, the ground state
(1s, 1s) belongs to the para-system with symmetric spa-
tial wave functions and must therefore, in the conventional
HF approach, be described by the Hartree approxima-
tion being based upon a simple product ansatz. But this
situation can be treated also by our present scalar form
of RST, namely by simply omitting the exchange terms
for both the relativistic system (3.37a)-(3.37b) and for its
non-relativistic limit (3.41a)-(3.41b).

Thus, the frequency ω of the emitted photons for the
transition (1s, 2s)→ (1s, 1s) is determined by

�ω = ET(1s, 2s)− ET(1s, 1s) , (4.15)

whose non-relativistic approximation is given by sub-
stituting here the HF functional EHF (3.69) in place
of ET (3.68). Figure 4 shows a plot of the relative de-
viations Θ,

Θ =
ω − ωexp

ωexp
, (4.16)

of the RST and HF predictions from the experimental val-
ues which are taken from ref. [29]. Here, a pleasant effect
occurs in favor of the present scalar RST which consists
in the result that for small nuclear charge (i.e. zex � 10)
the scalar RST predictions come closer to the experimen-
tal values than the corresponding HF predictions by some
50% or more, see fig. 4. However, for stronger external
fields (zex � 15, say) the exaggeration of that relativistic
effect of fig. 1 by the scalar fields becomes dominant and
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the scalar RST predictions become even worse than the
corresponding HF results.

4.5 RST for fermions

Surely, the deviations of the scalar RST predictions from
the experimental data for strong external fields zex � 20
(fig. 4) may appear somewhat disappointing. However, the
origin of this deficiency has nothing to do with RST it-
self but simply points at the fact that the real electrons
are fermions, not bosons. Thus, one will expect that the
RST predictions will meet better with the observations in
strong external fields when RST is adapted to fermion sys-
tems. Remember here that a single Dirac particle has con-
siderably smaller binding energy (in strong external fields)
in comparison to a Klein-Gordon particle (see fig. 1), and
it is just this effect of exaggeration of the scalar Klein-
Gordon theory which is the origin of failure of the corre-
sponding scalar RST predictions for zex � 20 (fig. 4).

In order to verify this claim, one elaborates RST for
fermion systems [26] and carries through the same numer-
ical studies as for the preceding case of bosons. In short,
one may mention that the gauge field system has the same
structure for fermions as for bosons, and it is only the mat-
ter subsystem which undergoes certain modifications: the
Klein-Gordon eq. (2.6) for spin-0 particles is replaced by
the two-particle Dirac equation,

i�cΓµ(DµΨ) =Mc2Ψ , (4.17)

which may be deduced from the corresponding RSE (2.1)
by means of the spinor analogue of the conservation equa-
tion (2.5) for bosons [27]:

Γµ · Hµ =Mc2 . (4.18)

Here the (8×8)-matrices Γµ are the generators of an eight-
dimensional representation of the Clifford algebra C(1, 3):

ΓµΓν + ΓνΓµ = 2gµν · 1 , (4.19)

and simultaneously the object Γµ plays the part of the
total velocity operator vµ (2.9) of the scalar case, i.e. the
total fermionic current jµ is given by

jµ = tr(I · Γµ) . (4.20)

Carrying now through all the computations necessary
to solve the fermionic analogue of the bosonic mass eigen-
value problem (3.37a)-(3.37b) lets us arrive at the fre-
quency ω of the photons emitted during the transition
(1s1/2, 2s1/2

3S1)→ (1s1/2, 1s1/2
1S0):

�ω = ET(1s1/2, 2s1/2
3S1)−ET(1s1/2, 1s1/2

1S0) . (4.21)

Clearly, this is the fermion analogue of the bosonic sit-
uation (4.15), where we have again restricted ourselves
to work in the electrostatic approximation. Nevertheless,
in view of its approximative character, this fermionic re-
sult (4.21) is very encouraging (fig. 5): namely, on the one

hand it preserves the improvement of the bosonic RST
result over the non-relativistic HF situation (fig. 4) for
moderate external-field strengths (zex � 10), and on the
other hand the fermionic result (4.21) avoids the bosonic
overestimation of the binding energy in the strong-field
regime zex � 20 (fig. 4). Quite on the contrary, it is just
for the strong external fields (zex � 30) that the fermionic
RST predictions come closer and closer to the experimen-
tal values.

The origin of this pleasant result for the strong fields
is closely related to the circumstance that the photon
frequency ω (4.21) deviates from the experimental value
up to some 3-4% in the weak-field regime zex � 4. The
common reason for both effects is namely that the inter-
electronic interaction energy EG constitutes a relatively
large fraction of the total energy ET for weak fields but is
negligible for strong fields (|EG| ! |ET|), so that in the
strong-field limit the total energy ET is practically iden-
tical to the sum of single-particle mass eigenvalues (i.e.
ET ∼M1c

2 +M2c
2). However, the single-particle eigen-

values Ma for non-interacting particles are correctly de-
scribed by the single-particle Dirac equation, which is part
of RST, and therefore the fermionic RST predictions are
relatively precise in the strong-field regime (fig. 5). On the
other hand, in the weak-field regime, the neglection of the
magnetic interactions among the electrons must necessar-
ily spoil the precision of the present scalar RST predictions
because the neglected magnetostatic energy presents here
a considerable part of the total energy ET.

4.6 Ground-state interaction energy

It may appear now that these relatively precise RST pre-
dictions for strong external fields (zex � 30 in fig. 5) are
exclusively due to the increasing dominance of the single-
particle eigenvalues Mac

2 over the interelectronic inter-
actions EG for building up the total energy ET (3.80).
However, this is not the whole truth because we are able
to demonstrate that the electrostatic interactions are still
taken into account to an amazingly correct extent by our
electrostatic approximation, even for very strong external
fields! In order to give a brief demonstration of this ef-
fect, we consider the ground-state interaction energy be-
tween the two electrons in the highly ionized helium-like
ions (i.e. with large nuclear charge zex � 30). Fortunately,
this interaction energy (∆Eexp, say) is accessible to direct
measurement [19]; and, on the other hand, this quantity
appears theoretically as the difference of the two-particle
ground-state energy ET(2) and the double one-particle
ground-state energy ET(1):

∆ERST = ET(2)− 2ET(1) . (4.22)

In principle, this difference can be computed with high
precision within the framework of RST but, in agreement
with the foregoing neglection of the magnetic interac-
tions, we are satisfied to work here again in the electro-
static approximation. Denoting the corresponding result
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by ∆E(e)
RST, one defines

∆E
(e)
RST � E

(e)
T (2)− 2ET(1) , (4.23)

where E
(e)
T (2) is the two-particle ground-state en-

ergy ET (3.80) to be computed by means of the spin ver-
sion [26] of the RST system (3.37a)-(3.37b), however un-
der neglection of the magnetic contributions. Concerning
the one-particle energy ET(1), one can refer to the mass
energy relation (3.76) with the mass eigenvalue M∗ being
given by eq. (4.3) which may then further be improved by
the Lamb-shift contribution [19].

The comparison of our calculations for the energy
difference ∆E(e)

RST (4.23) with the corresponding experi-
mental values ∆Eexp (see table 1) demonstrates now that
the interelectronic interaction for the helium-like ground
state is met by RST roughly up to 1–11% (fourth column).
Thus, the electrostatic approximation turns out to be not
too bad and simultaneously hints at the order of mag-
nitude of the (neglected) magnetic interactions. Clearly
for increasing nuclear charge, ranging from germanium
(zex = 32) up to bismuth (zex = 83), the electrons become
more and more relativistic, which enhances the magnetic
contributions to the energy difference and thus the elec-
trostatic approximation must necessarily become worse.

However, this failure of the electrostatic approximation
just meets with the estimate of the magnetic interaction
energy ∆E(m)

RST presented in sect. 1. The last column of the
table displays the values for the prefactor f∗ (1.10) which
measures the relative fraction of the magnetic contribu-
tion to the ground-state interaction energy ∆E. Recall
here that, according to those arguments leading to the es-
timate (1.10), the quantity f∗ should be (nearly) indepen-
dent of the nuclear charge zex, which is actually the case
up to zex ≈ 66 (dysprosium). This result supports the RST
picture of the cooperation of electric and magnetic inter-
actions in order to build up the relativistic energy ET of
the stationary bound many-particle systems, as proposed
by eq. (3.80). Clearly, this qualitative picture must now
be converted to a quantitative approach by solving the
original RST eigenvalue problem due to the two-particle
eq. (4.17) with high precision and comparing the results
to the corresponding observational data.
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